TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion

The Theory behind TheoryMine

Alan Bundy

(Joint work with Flaminia Cavallo, Lucas Dixon, Moa Johansson & Roy McCasland)

School of Informatics, University of Edinburgh

Cambridge 8.3.12

A D F A B F A B F A B F

TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion
Outline					

- 1 TheoryMine
- IsaWannaThm
- IsaCoSy
- 4 IsaPlanner

theory[mine]

- TheoryMine is a spin-out company in the novelty gift market.
 - www.theorymine.co.uk
- Generates novel theorems for customers to name.
- Theorems are inductive consequences of recursively defined functions and types.
- Certificate summarises: theorem plus type and function definitions.
 - Plus customised explanatory brochure.
 - Also tee-shirts, mouse mats and mugs.
- Theorem purchase not new, *cf* l'Hospital's Rule.

(日) (四) (王) (日) (日) (日)

TheoryMine uses a tower of four systems:

IsaWannaThm: generates novel recursive types and functions to form new recursive theories.

IsaCoSy: given a recursive theory, generates inductive conjectures in that theory.

IsaPlanner: given an inductive conjecture, tries to prove it using an inductive proof plan.

Isabelle: is guided through proof by IsaPlanner's proof plan.

TheoryMine

IsaWannaThm

IsaCoSy

IsaPlanner

l:

Discussion

Example Certificate

TheoryMin	e
CERTIFICATE OF REGISTRY	•
Quentin's Theorer	n:
Let	
$T = C_a(bool, bool) \mid C_b(T)$	
$ \begin{aligned} &f_{\alpha}:T\timesT\toT\\ &f_{\alpha}(C_{\mathfrak{g}}(x,y),z)=z\\ &f_{\alpha}(C_{b}(x,y)=C_{b}\left(f_{\alpha}(x,y)\right) \end{aligned} $	393
then	
$f_{\alpha}(y, f_{\alpha}(x,z)) = f_{\alpha}(x, f_{\alpha}(z))$	y,z))
Proof outline: induction on y	
THIS THEOREM HAS BEEN NAMED AND THE THEORYMINE DATABASE	DRECORDED

æ

TheoryMine IsaWannaThm IsaCoSy

IsaPlanner

Isabelle

Discussion

Explanation of the Certificate

New Recursive Data-Type: $T = C_a(bool, bool) | C_b(T)$

Four-coloured naturals: 0,1,2,..., 0,1,2,..., ...

New Defined Function:

$$T \times T \rightarrow T$$

 $f_{\alpha}(C_{a}(x,y),z) = z$
 $f_{\alpha}(C_{b}(x),y) = C_{b}(f_{\alpha}(x,y))$

A coloured version of addition: $f_{\alpha}(2,3) = 5$ NB - number inherits colour of second argument.

New Theorem:

$$f_{lpha}(x,f_{lpha}(y,z)) ~=~ f_{lpha}(y,f_{lpha}(x,z))$$

A contextual commutativity. f_{α} is not commutative: $f_{\alpha}(2,3) = 5 \neq 5 = f_{\alpha}(3,2)$

 TheoryMine
 IsaWannaThm
 IsaCoSy
 IsaPlanner
 Isabelle
 Discussion

 Generating Recursive Theories

- IsaWannaThm was UG project of Flaminia Cavallo.
 - But was completely overhauled by Lucas Dixon.
- It generates a set of recursive types.
- It generates some recursive functions over these types.
- These two choices provide a recursive theory.
 - Note that theories are purely definitional, so consistent.
 - Type and function spaces are both infinite,
 - but size limits imposed to ensure tractability.
- It uses IsaCoSy to generate inductive conjectures in this theory.
 - Note that all functions must appear in each conjecture.
- IsaCoSy uses IsaPlanner to prove them.

 TheoryMine
 IsaWannaThm
 IsaCoSy
 IsaPlanner
 Isabelle
 Discussion

 Generating Recursive Types

• Example type definition (from certificate):

$$T = C_a(bool, bool) | C_b(T)$$

• In general:

$$\tau ::= \ldots | c(\tau_1, \ldots, \tau_n) | \ldots$$

- where τ is type being defined,
- where c is typical constructor function,
- where τ_i might be τ or a non-recursive argument.
- Grammar for generating novel types:
 - From initial set of types, e.g., Bool and \mathbb{N} .
 - Vary number of constructor functions.
 - Vary their arity and types of their arguments.
 - Filter out any already in Isabelle library.

э

・ロト ・ 雪 ト ・ ヨ ト ・

 TheoryMine
 IsaWannaThm
 IsaCoSy
 IsaPlanner
 Isabelle
 Discussion

 Generating Recursive Functions

• Example function definition (from certificate):

$$egin{array}{rcl} T imes T&
ightarrow T\ f_lpha(C_{a}(x,y),z)&=&z\ f_lpha(C_b(x),y)&=&C_b(f_lpha(x,y)) \end{array}$$

- Within resource limits, incrementally generates all possible function types.
 - With one recursive argument (wlog, the first).
 - Non-recursive argument types can include bool and $\mathbb N.$
 - Avoid associative or commutative variants.
- Within resource limits, incrementally generates all possible structurally recursive functions.
 - Use IsaCoSy to generate function bodies.
 - Can use initial and previously defined functions.
 - Reject non-terminating functions using Isabelle's function package.

TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion
IsaCoSy					

- IsaCoSy was PhD project of Moa Johansson.
- It generates irreducible terms. In particular, conjectures.
- Used by TheoryMine to generate inductive conjectures for any recursive theory, e.g.,

$$f_{\alpha}(x, f_{\alpha}(y, z)) = f_{\alpha}(y, f_{\alpha}(x, z))$$

- TheoryMine conjectures are quantifier-free equations between irreducible terms.
- Within resource limits, incrementally generates all possible such conjectures.
- Non-theorems filtered out by quickcheck counter-example finder.
- Survivors sent to IsaPlanner to be proved.

 TheoryMine
 IsaWannaThm
 IsaCoSy
 IsaPlanner
 Isabelle
 Discussion

 IsaCoSy's Irreducible Term Generation

- Irreducibility ensures that conjectures:
 - Are in normal form, so simplest expression of result.
 - Are not rewrite consequence of definitions and previous theorems.
 - That is, induction (or rewriting backwards) is required to prove them.
 - Therefore, have some intrinsic merit.
- Constraints ensure reducible terms are not generated.
 - Definitions and theorems are oriented as rewrite rules, e.g., $f(c(x)) \Rightarrow t$.
 - A new constraint is then imposed to ban generation of (sub-)terms of form f(c(...)).
 - Constraint set grows with new definitions and theorems.
- IsaCoSy also generates bodies of function definitions.

- Very good precision/recall results against Isabelle libraries.
- Typical IsaCoSy theorems in regular theories.

$$a \times b = b \times a$$

$$(a + b) + c = a + (b + c)$$

$$(a \times b) + (c \times b) = (a + c) \times b$$

$$rev(map \ a \ b) = map \ a(rev \ b)$$
fold! a (fold! a b c) d = fold! a b (c@d)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Quickcheck is an Isabelle tool being developed by Lukas Bulwahn.
- IsaCoSy sends it equations of form $t_1(\vec{x}) = t_2(\vec{x})$, where $\vec{x} : \vec{\tau}$.
- Quickcheck exhaustively generates all small $\vec{c} : \vec{\tau}$.
- It turns the t_i into ML programs and evaluates them on these \vec{c} .
- If $t_1(\vec{c}) \neq t_2(\vec{c})$ for some \vec{c} then conjecture is false.

TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion
Limitatio	ons of Quickc	heck			

Conditionals: $P(\vec{x}) \implies t_1(\vec{x}) = t_2(\vec{x}).$

- If $P(\vec{x})$ is rarely true then $P(\vec{c})$ is usually false and conditional true.
- Need some way to generate only \vec{c} s for which $P(\vec{c})$ is true.

Existentials: $\exists \vec{x} : \vec{\tau} . P(\vec{x})$

- Need to prove $\forall \vec{x} : \vec{\tau} . \neg P(\vec{x})$ to disprove conjecture.
- Quickcheck can only do this when $\vec{\tau}$ is finite.

・ロット (雪) () () () ()

TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion
IsaPlanner					

- IsaPlanner was originally PhD project of Lucas Dixon.
- Uses proof planning to guide Isabelle on inductive conjectures.
 - Uses rippling and proof critics.
 - Proofs entirely automatic.
 - High success rate on simple theorems.
- Example theorems for $T + f_{\alpha}$ theory:

The Richard Scott Russell Theorem:

$$f_{\alpha}(x, C_b(y)) = C_b(f_{\alpha}(x, y))$$

The Herdman Theorem:

$$f_{\alpha}(f_{\alpha}(x,y),z) = f_{\alpha}(x,f_{\alpha}(y,z))$$

Quentin's Theorem

$$f_{\alpha}(y, f_{\alpha}(x, z)) = f_{\alpha}(x, f_{\alpha}(y, z))$$

(日)、

э

TheoryMine

IsaWannaThm

IsaCoSy

IsaPlanner

Isabelle

・ロト ・四ト ・ヨト ・ヨト

э

Discussion

Inductive Proof of Quentin's Theorem

Quentin's Theorem: $f_{\alpha}(y, f_{\alpha}(x, z)) = f_{\alpha}(x, f_{\alpha}(y, z))$ Rewrite Rules:

$$f_{\alpha}(C_{a}(x,y),z) \Rightarrow z$$
 (1)

$$f_{\alpha}(C_b(x), y) \Rightarrow C_b(f_{\alpha}(x, y))$$
 (2)

$$f_{\alpha}(x, C_b(y)) \Rightarrow C_b(f_{\alpha}(x, y))$$
 (3)

Base Case:

$$\begin{array}{rcl} f_{\alpha}(\mathcal{C}_{a}(b_{1},b_{2}),f_{\alpha}(x,z)) &=& f_{\alpha}(x,f_{\alpha}(\mathcal{C}_{a}(b_{1},b_{2}),z)) \\ & f_{\alpha}(x,z) &=& f_{\alpha}(x,z) \end{array} \qquad \text{by } 2\times(1) \end{array}$$

Step Case:

$$\begin{aligned} & f_{\alpha}(C_{b}(y), f_{\alpha}(x, z)) &= f_{\alpha}(x, f_{\alpha}(C_{b}(y), z)) \\ & C_{b}(f_{\alpha}(y, f_{\alpha}(x, z))) &= f_{\alpha}(x, C_{b}(f_{\alpha}(y, z))) & \text{by } 2 \times (2) \\ & C_{b}(f_{\alpha}(y, f_{\alpha}(x, z))) &= C_{b}(f_{\alpha}(x, f_{\alpha}(y, z))) & \text{by } (3) \\ & C_{b}(f_{\alpha}(x, f_{\alpha}(y, z))) &= C_{b}(f_{\alpha}(x, f_{\alpha}(y, z))) & \text{by hyp} \end{aligned}$$

TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion
lsabelle					

- Generic, interactive proof assistant from Cambridge and Munich.
- Classical, higher-order logic most popular theory,
 - which is what we use.
- LCF-style prover with small, trusted core of logical rules,
 - provides very high level assurance of correctness.
- Tactic-driven by IsaPlanner.
- Also includes quickcheck counter-example finder.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

The following TheoryMine features are crucial to its business model:

- Restriction to purely definitional theories ensures consistency.
- lsabelle's LCF-style architecture ensures correctness.
- IsaPlanner's proof planning provides automatic proof.
- IsaCoSy's irreducibility heuristic ensures intrinsic merit of theorems.
- IsaWannaThm's meta-grammars generate a huge number of novel theories,
 - and hence theorems: initially estimated at 10^{16} .

TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion
Conclusior	1				

- Successfully generates huge numbers of novel theorems of some intrinsic merit.
- Design decisions motivated by business model.
- Recursive types, functions and theorems are simple.
- Many open conjectures generated.
- TheoryMine slows as theories become more complex.

TheoryMine	IsaWannaThm	IsaCoSy	IsaPlanner	Isabelle	Discussion
Further V	Vork				

- More user involvement.
- Extend product offering:
 - Have English, Mandarin and Spanish language plan more.
 - On-line journal with proof summary.
- Extend space of types, e.g., non-free, mutual, higher-order.
- Extend space of functions, e.g., simultaneous, mutual, higher-order.
- Extend space of theorems, e.g., conditional, existentials, higher-order.
- Make IsaCoSy more efficient.
- Improve proof-power of IsaPlanner.
- Open conjectures as resource.

