
TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

The Theory behind TheoryMine

Alan Bundy

(Joint work with Flaminia Cavallo, Lucas Dixon,
Moa Johansson & Roy McCasland)

School of Informatics,
University of Edinburgh

Cambridge 8.3.12

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Outline

1 TheoryMine

2 IsaWannaThm

3 IsaCoSy

4 IsaPlanner

5 Isabelle

6 Discussion

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

TheoryMine

TheoryMine is a spin-out company in the novelty gift market.

www.theorymine.co.uk

Generates novel theorems for customers to name.

Theorems are inductive consequences of recursively defined
functions and types.

Certificate summarises: theorem plus type and function
definitions.

Plus customised explanatory brochure.
Also tee-shirts, mouse mats and mugs.

Theorem purchase not new, cf l’Hospital’s Rule.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Underlying Technology

TheoryMine uses a tower of four systems:

IsaWannaThm: generates novel recursive types and
functions to form new recursive theories.

IsaCoSy: given a recursive theory, generates inductive
conjectures in that theory.

IsaPlanner: given an inductive conjecture, tries to prove it
using an inductive proof plan.

Isabelle: is guided through proof by IsaPlanner’s proof plan.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Example Certificate

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Explanation of the Certificate

New Recursive Data-Type:
T = Ca(bool , bool) | Cb(T)

Four-coloured naturals: 0,1,2,..., 0,1,2,..., ...

New Defined Function:
T × T → T

fα(Ca(x , y), z) = z

fα(Cb(x), y) = Cb(fα(x , y))

A coloured version of addition: fα(2, 3) = 5
NB - number inherits colour of second argument.

New Theorem:
fα(x , fα(y , z)) = fα(y , fα(x , z))

A contextual commutativity.
fα is not commutative: fα(2, 3) = 5 6= 5 = fα(3, 2)

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Generating Recursive Theories

IsaWannaThm was UG project of Flaminia Cavallo.

But was completely overhauled by Lucas Dixon.

It generates a set of recursive types.

It generates some recursive functions over these types.

These two choices provide a recursive theory.

Note that theories are purely definitional, so consistent.
Type and function spaces are both infinite,
but size limits imposed to ensure tractability.

It uses IsaCoSy to generate inductive conjectures in this
theory.

Note that all functions must appear in each conjecture.

IsaCoSy uses IsaPlanner to prove them.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Generating Recursive Types

Example type definition (from certificate):

T = Ca(bool , bool) | Cb(T)

In general:

τ ::= . . . | c(τ1, . . . , τn) | . . .

where τ is type being defined,
where c is typical constructor function,
where τi might be τ or a non-recursive argument.

Grammar for generating novel types:

From initial set of types, e.g., Bool and N.
Vary number of constructor functions.
Vary their arity and types of their arguments.
Filter out any already in Isabelle library.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Generating Recursive Functions

Example function definition (from certificate):

T × T → T

fα(Ca(x , y), z) = z

fα(Cb(x), y) = Cb(fα(x , y))

Within resource limits, incrementally generates all possible
function types.

With one recursive argument (wlog, the first).
Non-recursive argument types can include bool and N.
Avoid associative or commutative variants.

Within resource limits, incrementally generates all possible
structurally recursive functions.

Use IsaCoSy to generate function bodies.
Can use initial and previously defined functions.
Reject non-terminating functions using Isabelle’s function
package.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

IsaCoSy

IsaCoSy was PhD project of Moa Johansson.

It generates irreducible terms. In particular, conjectures.

Used by TheoryMine to generate inductive conjectures for any
recursive theory, e.g.,

fα(x , fα(y , z)) = fα(y , fα(x , z))

TheoryMine conjectures are quantifier-free equations between
irreducible terms.

Within resource limits, incrementally generates all possible
such conjectures.

Non-theorems filtered out by quickcheck counter-example
finder.

Survivors sent to IsaPlanner to be proved.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

IsaCoSy’s Irreducible Term Generation

Irreducibility ensures that conjectures:

Are in normal form, so simplest expression of result.
Are not rewrite consequence of definitions and previous
theorems.
That is, induction (or rewriting backwards) is required to prove
them.
Therefore, have some intrinsic merit.

Constraints ensure reducible terms are not generated.

Definitions and theorems are oriented as rewrite rules, e.g.,
f (c(x))⇒ t.
A new constraint is then imposed to ban generation of
(sub-)terms of form f (c(. . .)).
Constraint set grows with new definitions and theorems.

IsaCoSy also generates bodies of function definitions.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

IsaCoSy Results

Very good precision/recall results against Isabelle libraries.

Typical IsaCoSy theorems in regular theories.

a× b = b × a

(a + b) + c = a + (b + c)

(a× b) + (c × b) = (a + c)× b

rev(map a b) = map a(rev b)

foldl a (foldl a b c) d = foldl a b (c@d)

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

The Quickcheck Counter-Example Finder

Quickcheck is an Isabelle tool being developed by Lukas
Bulwahn.

IsaCoSy sends it equations of form t1(~x) = t2(~x), where ~x : ~τ .

Quickcheck exhaustively generates all small ~c : ~τ .

It turns the ti into ML programs and evaluates them on these
~c .

If t1(~c) 6= t2(~c) for some ~c then conjecture is false.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Limitations of Quickcheck

Conditionals: P(~x) =⇒ t1(~x) = t2(~x).

If P(~x) is rarely true then P(~c) is usually false
and conditional true.
Need some way to generate only ~cs for which
P(~c) is true.

Existentials: ∃~x : ~τ . P(~x)

Need to prove ∀~x : ~τ . ¬P(~x) to disprove
conjecture.
Quickcheck can only do this when ~τ is finite.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

IsaPlanner

IsaPlanner was originally PhD project of Lucas Dixon.

Uses proof planning to guide Isabelle on inductive conjectures.

Uses rippling and proof critics.
Proofs entirely automatic.
High success rate on simple theorems.

Example theorems for T + fα theory:

The Richard Scott Russell Theorem:

fα(x ,Cb(y)) = Cb(fα(x , y))

The Herdman Theorem:

fα(fα(x , y), z) = fα(x , fα(y , z))

Quentin’s Theorem

fα(y , fα(x , z)) = fα(x , fα(y , z))

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Inductive Proof of Quentin’s Theorem

Quentin’s Theorem: fα(y , fα(x , z)) = fα(x , fα(y , z))

Rewrite Rules:
fα(Ca(x , y), z) ⇒ z (1)

fα(Cb(x), y) ⇒ Cb(fα(x , y)) (2)

fα(x ,Cb(y)) ⇒ Cb(fα(x , y)) (3)

Base Case:

fα(Ca(b1, b2), fα(x , z)) = fα(x , fα(Ca(b1, b2), z))
fα(x , z) = fα(x , z) by 2×(1)

Step Case:

fα(Cb(y), fα(x , z)) = fα(x , fα(Cb(y), z))
Cb(fα(y , fα(x , z))) = fα(x ,Cb(fα(y , z))) by 2×(2)
Cb(fα(y , fα(x , z))) = Cb(fα(x , fα(y , z))) by (3)
Cb(fα(x , fα(y , z))) = Cb(fα(x , fα(y , z))) by hyp

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Isabelle

Generic, interactive proof assistant from Cambridge and
Munich.

Classical, higher-order logic most popular theory,

which is what we use.

lcf-style prover with small, trusted core of logical rules,

provides very high level assurance of correctness.

Tactic-driven by IsaPlanner.

Also includes quickcheck counter-example finder.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Explanation of Design Decisions

The following TheoryMine features are crucial to its business
model:

Restriction to purely definitional theories ensures consistency.

Isabelle’s lcf-style architecture ensures correctness.

IsaPlanner’s proof planning provides automatic proof.

IsaCoSy’s irreducibility heuristic ensures intrinsic merit of
theorems.

IsaWannaThm’s meta-grammars generate a huge number of
novel theories,

and hence theorems: initially estimated at 1016.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Conclusion

Successfully generates huge numbers of novel theorems of
some intrinsic merit.

Design decisions motivated by business model.

Recursive types, functions and theorems are simple.

Many open conjectures generated.

TheoryMine slows as theories become more complex.

TheoryMine IsaWannaThm IsaCoSy IsaPlanner Isabelle Discussion

Further Work

More user involvement.

Extend product offering:

Have English, Mandarin and Spanish language — plan more.
On-line journal with proof summary.

Extend space of types, e.g., non-free, mutual, higher-order.

Extend space of functions, e.g., simultaneous, mutual,
higher-order.

Extend space of theorems, e.g., conditional, existentials,
higher-order.

Make IsaCoSy more efficient.

Improve proof-power of IsaPlanner.

Open conjectures as resource.

	TheoryMine
	IsaWannaThm
	IsaCoSy
	IsaPlanner
	Isabelle
	Discussion

