
A concept we refer to as the biological constraint is shown to be able
to explain the effectiveness of mathematical descriptions of the
universe, as well as accounting for the origin of life and our ability
to think logically. The biological constraint, which can be studied
systematically through the use of appropriate models, refers to
selection in the biological realm in favour of mechanisms that have wide
applicability, a subset of which have mathematical character that can
evolve to ever subtler forms. The precise conformance of physical
phenomena to precise mathematical laws is related to the enforcement of
symmetry.
On OriginsA concept we refer to as the biological constraint is shown to be able
to explain the effectiveness of mathematical descriptions of the
universe, as well as accounting for the origin of life and our ability
to think logically. The biological constraint, which can be studied
systematically through the use of appropriate models, refers to
selection in the biological realm in favour of mechanisms that have wide
applicability, a subset of which have mathematical character that can
evolve to ever subtler forms. The precise conformance of physical
phenomena to precise mathematical laws is related to the enforcement of
symmetry.
Brian JosephsonUniversity of Cambridge A concept we refer to as the biological constraint is shown to be able
to explain the effectiveness of mathematical descriptions of the
universe, as well as accounting for the origin of life and our ability
to think logically. The biological constraint, which can be studied
systematically through the use of appropriate models, refers to
selection in the biological realm in favour of mechanisms that have wide
applicability, a subset of which have mathematical character that can
evolve to ever subtler forms. The precise conformance of physical
phenomena to precise mathematical laws is related to the enforcement of
symmetry.
