.

Escape from
the ivory tower
The Haskell journey%

Simon Peyton Jones, Microsoft Research

1976-80

=4 John and Simon
¢ go tTo university

Early days of microprocessors
4kbytes is a lot of memory
Cambridge University has one (1) computer

AEIJ‘

The late 1970s, early 1980s

SK combinators,
J graph reduction

(Turner)

Lambda the Ultimate
(Steele, Sussman)

e.g. (\x. x+x) 5
=S(S(K+)I)I5

Backus Turing Award 1977

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

rd ah L] - B - -

John Backus Dec 1924 - Mar 2007

—

\

=

The Call

Have no truck with the
grubby compromises of
imperative programming!

Go forth, follow the Path
of Purity, and design
new languages
and new computers
and rule the world

\nal

~

9
se,

Turner)

B

mbinators,
| reduction

“urner)

‘ 11}
Because we all

want to build our
own language and

VMII
Cameron Purdy

Result
Chaos

Many, many bright young things

Many conferences
(birth of FPCA, LFP)

Many languages
(Miranda, LML, Orwell, Ponder, Alfl, Clean)

Many compilers

Many architectures
(mostly doomed)

Crystalisation

FPCA, Sept 1987: initial meeting.
A dozen lazy functional programmers, wanting to agree
on a common language.

= Suitable for teaching, research, and application
Formally-described syntax and semantics

Freely available

Embody the apparent consensus of ideas

= Reduce unnecessary diversity

Absolutely no clue how much work we were taking on
Led to...a succession of face-to-face meetings

April 1990 (2% yrs later): Haskell 1.0 report

Practitioners

Geeks

History of most research

languages
1,000,000
10,000
100
The quick death
1 —\
lyr Byr 10yr 15yr

Practitioners

Geeks

Successful research languages

1,000,000

10,000

100

/\The slow death
1

lyr Byr 10yr 15yr

Practitioners

Geeks

C++, Java, Perl /Ruby

Threshold of immortality

1,000,000
10,000
The complete
100 absence of death

lyr Byr 10yr 15yr

Practitioners

Geeks

Committee languages

1,000,000

10,000

100 The committee

language

lyr Byr 10yr 15yr

H as ke I l “Learning Haskell is a great w;\y\of

training yourself to think functionally
so you are ready to take full

w "I'm already looking at advantage of C# 3.0 when it comes
b codmlg problems and my out”
mental perspective is how blog Apr 2007

S 1,000,000 shifting back and forth R —
e between purely OO and

c— more FP styled solutions”

kT (blog Mar 2007)

(> 10,000

| -

(a T

100 :

" The second life?
X

Q)

S 1
O

Apr 1990 1995 2000 2005 2010

4

Haskell is 21; so is Michael

CHPELETEY A

1992

Q)
-
= |
>
0
QN
O
=

WG2.8 June 1992
Jonr

W2.8 Ju

')

he 1992

*
EE‘ m |
==l

n:"ﬁn

Language popularity
how much language X is used

This is a chart showing combined results from all data sets.

S Haskell #20
o (#25 in 2008)

~@\ il langpop.com Nov 2011

how much language X is talked about

JavaScript

Actionscript|

Language popularity

Haskell #5
(#6 in 2008)

langpop.com Nov 2011

)
)

Incredibly supportive community

™ Firefox ~ |

»= haskell.org/haskellwiki/Haske

*§ - Robert Glueck

£ Yy

(& >
(€)
L] StickWiki ¥ NewCodeGen B8 i have a zunussi aquacy... & Train | Current || Haskell | ' GHC [J ChordCo | CAS | WG2.8 | RandAlg @ ROTTEN TOMATOES: M... » [Bookmarks

< fev 2... |8 Schedule... | = Simon Pe...| [| » Suppor... | ¥ Create O... | E) A Neigh... | "% InfoQ: Ru...| [£) main is u... | E) Neil Mitc... Cs Copy you...| | | Home pa...| ¥=Haskel... x| > + -

View source History

The Haskell Programming Language

m

Haskell is an advanced purely-functional programming language. An open-source product of

more than twenty years of cutting-edge research, it allows rapid development of robust, L
concise, correct software. With strong support for integration with other languages, built-in

rich librarie

Haskell makes it easier to produce flexible, maintainable, high-quality software.

Learn Haskell Use Haskell Join the Community
e What is Haskell? ¥ Download Haskell | « Haskell on Reddit, Stack Overflow
¢ Try Haskell in your browser » Language specification ¢ Mailing lists, IRC channels
e Learning resources e Hackage library database ¢ Wiki (how to contribute)
e Books & tutorials ¢ Applications and libraries ¢ Communities and Activities Reports
e Library documentation e Hoogle and Hayoo API search e Haskell in industry, research and

education.
¢ Planet Haskell B, The
Q‘ Monad.Reader -
= ® Find: taste ¥ Next ¥ Previous & Highlight all [T Match case

2 2]

Mobilising the community

= Package = unit of distribution

= Cabal: simple tool to install package
and all its dependencies

bash$ cabal install pressburger

= Hackage: central
repository of
packages, with
opeh upload policy

3 HackageDB: packages by category - Mozilla Firefox
Ble Edit Wew History Bookmarks Tnols Help

® -c

| stickwiki |] Simon'slinks || Haskell || GHC |] ChordCa

(et [A | httpsijhackage haskel.orgfpackagesfarchive/pkg lst himl

[Cl- | ik computer science research ukere

[cas [] we2.8 [] TOPLAS [] &* [] Occhnal |] Essays &P Max Bolingbroke B, Joel on Scftware 8] xked
ked - & wiebcom..| | | Galois Blog » Blo... |)= Hackage statistic... | @@ POPL 2009

7 HackageD... £ | i #3324 (Add Fold... % #2120 (rraysal.)= The Haskel-Cafe

Intreduction Packages Hayoo! Wyhat's new Upload zer accounts
Packages by category

Categories: .NET (1), Al (5), Algorithrns (27), Backup (1), Bicinformatice (39, BSD (1), Classification (1), Clustering (2), Code Generation (4), Codec (32), Codecs (3),
Combinators (3), Comonads (1), Compiler (3}, C (23), G .8 ¥ (23), Console {113, Contral (54), Cryptography (10}, Data (184),
Data Mining (4), Data Structures (26), Database (40), Datamining (1), DataStructures (1), Debug (5), Dependent Types (3}, Deskiop (1), Development (62}, Distributed
Computing (18), Distribution (24), Editor (&), Education (2), FFI (7), FFI Tools (2), Finance (1), Foreign (18), FRP (16), Game (37), Generics (13), Gentoa (1), GHC [2), GIS
Programs (19, Graphics (75), GUI (200, Hardware (3), Help (1), IDE (1, Intedaces (&), Language (579, List (4), Math (53), Middleware (2), Manadic Regions (13,

Monads (23), Music (14), Matural Language Processing (13), Netwark (78), Metwarking (1), Mumber Theary (1), Mumeric (1), Numerical (7), Other (4), Parsing (30), Pattern
Classification (1), Physics (4), PL/SQL Tools (1), Pugs (), Reactivity {12}, Reflection (2}, RFG (1), Scientific Simulation (1), Screensaver (1), Scripting (1), Search (4),
Security 1), Sound (50), Source-tools (5, Stochastic Contral (1), System (116), System Consale (1), Test (1), Testing (22), Text (112), Text. ParserCombinators Parsing
Text (1), Theorem Provers (3), Trace (2), User Interfaces (23), User-interface (13, Utility (1), Utils (7), Weh (34), XML (18}, Unclassified (27)

.NET

<= hs-dotnet library. Pragmatic NET interop for Haskell
Al

= Dao program: An interactive knowledge base, natural language interpreter
= hfann library and program; Haskell binding to the FAMNN library

= hgalib library: Haskell Genetic Algorithm Library

<= hpylos program: Al of Pylos game with GLUT interface

< mines program: Minesweeper simulation using neural networks

Algorithms

s kinan: caarch likrane Rinant and avhanantial caarehos

Now over 3,5000 packages on Hackage

Library Categories

Uatabase
B Cata

Sound~ : -
Math~" W Text
Language Other W System
Web Il Control
B Graphics
Network W Cevel
- B Hetwork
[l Web
Deved [Language
B Math
Graphics Data Bl Sound
[Database
Control GUI
Text [Cther

System

<

The packages on Hackage %‘

AamplesiParFil, eventlog = ThiresdSoope

Fle “iew Help

e e 2l &~ B | B

Koy Traces |E‘an-u|4:rn-ur|4:5| Tirmekne

Acthaty Profike 1% o kTS & 13 BE Ta [= 108 1ls 12% I8 14s 1G5 18s 17s 18 19s 2% 21s
= HEC Tracas E
| o R
HEC 1
HEC 2
HEC 3
5 :
Sppark Creadon 1 HEE O
b Spaark Cormeersion O
F Sgmarks ool]
HEC L
 HEC 2
HEC 3
rI ETEIFIE]
Events
| [=1
42498895 cap 1 nurring thread & |3
4.2448089s cap & nanning thread S5
4,74400%9s cop 3: thraed 3 is nurnabl
4. 2448908 can 3 nurring thread =5
47454005 cop 2 stoping thread 5 (heap overflow) =

Q:|| EaMpAESIFor Pl Evertiog (/542 12 everts, 21.6675)

The Glasgow Haskell Compiler

= GHC today

- First release 1991: 13k lines, 110
modules, sequential

- Now: 125k lines, 380 modules, parallel
= >> 100k users
= 100% open source (BSD)

= Still in furious development: > 200
commits/month

)

AE—JD‘

Commercial users

= High assurance systems (Galois, Mitre, NICTA)
= Controls systems (Eaton)
= Banks (lots)

= Electricity supply contracts (RWE), risk analysis
(iba CG)

= Web frameworks/servers (HAppS, JanRain)
= Games (Joyride)
= Social networks (Peerium)

http://haskell.org/haskellwiki/Haskell_in_industry

After 21 years, Haskell has a vibrant,
growing ecosystem, and is still in a
ferment of new developments.

Why?

1. Keep faith with deep, simple principles
2. Killer apps:
« domain specific languages
« concurrent and paralle] programming
_, 3. Avoid success at all costs | Thsissosimple tve

X wasted my entire life"
@\ Steve Vinoski

Avoiding success

= A user base that is

- Smallish: enough users to drive innovation,
not so many as to stifle it

- Tolerant. Very tolerant.

- Innovative and slightly geeky: Haskell users
react to new features like hyenas react to
red meat

- Extremely friendly
makes Haskell nimble.
= Avoided the Dead Hand of standardisation

committees

Deep, simple principles

Source language

Haskell

Dozens of
Types

100+
constructors

AE'J‘

Intermediate language

System FC
3 types,
15 constructors

1

Rest of GHC

Deep simple principles

= System F is GHC's intermediate language
(Well, something very like System F.)

data Expr
= Var Var
| Lit Literal
| App Expr Expr
| Lam Var Expr
| Let Bind Expr
| Case Expr Var Type [(AltCon, [Var], Expr)]
| Cast Expr Coercion
| Type Type
| Coercion Coercion
| Tick Note Expr

data Bind = NonRec Var Expr | Rec [(Var,Expr)]

| data AltCon = DEFAULT | LitAlt Lit | DataAlt DataCon

:::

~

A
|

System FC

ex=x|k|t]|y
| e;e, | \(xi1).e
| let bind ine
| case e of alts
ey

Everything has to translate into this tiny language
Fantastic language designh sanity check

)

AE—JD‘

What deep, simple
principles?

1. Purity and laziness

2. Types; especially type classes

Laziness
and
Purity

|

Laziness

= Laziness was Haskell's initial rallying cry

= John Hughes's famous paper "Why
functional programming matters”
- Modular programming needs powerful glue

- Lazy evaluation enables new forms of
modularity; in particular, separating generation
from selection.

- Non-strict semantics means that unrestricted
beta substitution is OK.

AE—JD‘

But...

= Laziness makes it much harder to reason about
performance, especially space. Tricky uses of seq
for effect seq :: a ->b ->b

= Laziness has a real implementation cost

= Laziness can be added to a strict language
(although not as easily as you might think)

= And it's not so bad only having BV instead of

So why wear the hair shirt of laziness?

AE—JD‘

Laziness keeps you pure

= Every call-by-value language has given into
the siren call of side effects

= But in Haskell
(print “yes”) + (print “no”)
just does not make sense. Even worse is
[print “yes”, print “no”]
= So effects (I/0, references, exceptions) @
are just not an option. =

= Result: prolonged embarrassment.
Stream-based I/0, continuation I/0...
u’r NO DEALS WIH THE DEVIL

Laziness keeps you

N AL

. Compt chending

A |

' 3\

Philip W ai_‘ N~
Tiversity f G

| S8 certalld
—— 0TS

Imperative functional programming

Simon L, Peyton Jones

Philip Wadler

puting Science, University of Glasgow
monpj,wadler}@dcs -8lagsow.ac.uk

October 1999

Dept of Clom
Email: {si

This paper appears in
ACM Symposium on Principles Of Programming Languages (POPJ,),
pp71-84. This copy corrects a fe ' '

Abstract

I/O are constructed b

Yy gluing together smaller pro-
grams that do so (Sect

ion 2). Combined with higher-

We present gz new model, based op mo

D

nads, for erform-

F T

-
ow

Salvation through monads

A value of type (10 t)is an “action”

that, when performed, may do some
input/output before delivering a result

of type t.

getChar :: IO Char
putChar :: Char -> I0 ()

= The main program is an action of type IO ()

main :: IO ()
~@9‘ main = putChar ‘x’

Connecting I/0 operations

(>>=)

:: I0a -> (a->I0Db) > I0Db

return :: a -> I0 a

eg. Read two characters,
print the second, return both

getChar >>= (\a ->
getChar >>= (\b ->
putChar b >>= (\() ->
return (a,b))))

The do-notation

do {
getChar >>= \a -> a <- getChar;

getczar >>i \b -> b <- getChar;
putchar b >>= \()-> = = putchar b;

return (a,b) return (a,b)

}

= Syntactic sugar only
= Easy translation into (>>=), return
= Deliberately imperative “look and feel”

Control structures

Values of type (IO t) are first class

]

So we can define our own "control structures’

forever :: IO () -> IO ()
forever a do { a; forever a }

repeatN :: Int -> IO () -> IO ()
repeatN 0 a return ()
repeatN n a do { a; repeatN (n-1) a }

€.J. repeatN 10 (putChar 'x’)

Af—a‘

Fine grain control

= reverse :: String -> String
o pure: ho side effects

= launchMissiles :: String -> IO [String]

o impure: international side effects

" fransfer :: Acc -> Acc -> Int -> STM ()

o transactional: limited effects (reading and
writing transactional variables)

There are lots of useful monads,
__fy=n not only I/0
Ny Y

Our biggest mistake \

What have we achieved?

= The ability to mix imperative and purely-
functional programming, without ruining
either: the types keep them separate

= All laws of pure functional programming
remain unconditionally true

Purity by default

effects are a little
inconvenient
But why

~@9‘ IS purity

good?

Purity pays: understanding %‘

Xl.insert(Y) .
X2.delete(Y) Vﬁ'l‘é},ﬁﬁﬁsdl'és

= Would it matter if we swapped the
order of these two calls?

= What if X1=X2?
= T wonder what Xl.insert does?

Lots of heroic work on static analysis,
bu’r hampered by unnecessary effects

=

Purity pays: verification | Ffrecondiior
Spec# void Insert(int index, object value)

requires (O <= index && index <= Count)
ensures Forall{ int i in O:index; old(this[i]) == this[i] /

}
= The pre and post-conditions are Post

written in... a functional language

= Also: object invariants
But: invariants temporarily broken
_Hence: "expose” statements

Purity pays: testing %

A property of sets propUnion :: Set a -> Bool
sSsUS=Ss propUnions = unionss == s

In an imperative or OO language, you must

= set up the state of the object, and the
external state it reads or writes

* make the call

= inspect the state of the object, and the
external state

= perhaps copy part of the object or global
state, so that you can use it in the

posTcondiTion

Purity pays: maintenance

= The type of a function tells you a
LOT about it reverse :: [a] -> [a]

= Large-scale data representation
changes in a multi-100kloc code base
can be done reliably:
- change the representation
- compile until no type errors
- works

¢

Purity pays: parallelism
= Pure programs are "naturally parallel”

= No mutable state A1 B1
means no locks,
no race hazards Bl B2

= Results totally unaffected by
parallelism (1 processor or zillions)
= Examples
- Google's map/reduce
- SQL on clusters

8- PLINQ

The challenge of effects

Arbitrary effects
C

Useful

No effects
Haskell

Safe

Useless

Dangerous

The challenge of effects

Plan A

(everyone else)
Useful | (Arbitrary effects > @

PN

Plan B
(Haskell)

Useless

Dangerous Safe

Lots of cross-over

Plan A

(everyone else)
Useful | (Arbitrary effects > @
- PN
nvy

Plan B

(Haskell)
Useless
@eﬁ

) Dangerous Safe

Lots of cross-over

Plan A

(everyone e>lse) .
PN

Ideas; e.g. Software
Transactional Memory Plan B

(retry, orElse) (Haskell)

Useful | (Arbitrary effects

Useless

A—\E,a‘
AL
\

Dangerous Safe

SLPJ conclusions

= One of Haskell's most significant
contributions is to take purity seriously,
and relentlessly pursue Plan B

" Purely functional programming feels very
very different: you have to "rewire your
brain”

= But it's not "just another approach”:
ultimately, there is no alternative.

AE_'?‘

|

Types and
type classes

¢

Starting point: ML

= Parametric polymorphism x
append :: [a] -> [a]
= Types are inferred
append [] ys=ys
append (x:xs) ys = x : append Xxs ys
= Algebraic data types
data Tree a

= Leaf a
| Branch (Tree a) (Tree a)

¢

Problem

= Functions that are "nearly polymorphic”
- member :: a -> [a] -> Bool
- sort :: [a] -> [a]
- square ::a->a
- show :: a -> String
- serialise :: a -> BitString
- hash :: a -> Int
= Usual solution: "bake them in" as a
_runtime service

AE—JD‘

Solution

Type classes

Works for any type 'd’,
provided 'a’ is an
instance of class Num

seguare a—>a
square Num a => a -> a
square X = x * x
Similarly:
sort Ord a => [a] -> [a]
serialise Show a => a -> String
member Eqg a => a -> [a] -> Bool

AE_'?‘

Declaring classes

square :: Num a =>/i/:i/i/J
.
class Num a where Haskell class is

(+) :: a -> a -> a like a Java

(*) :: a ->a -> a interface)

..etc...

instance Num Int where
(+) = plusiInt
(*) = mulInt
..etc...

Allows 'square’ to be
L applied to an Int

AE,'D‘

How type classes work

When you write this... ...the compiler generates this

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n

class Num a where
(+) . a ->a -> a
(*) . a -> a -> a
negate :: a -> a
.etc. .

The class decl translates to:
* A data type decl for Num
* A selector function for
each class operation
N

square d x = (*) d x x ’/

data Num a
= MkNum (a->a->a)

(a->a->a)
(a->a)
.etc. ..
(*) :: Num a -> a -> a -> a
(*) (MkNum m ...) = m

A value of type (Num T) is a
vector of the Num operations for
type T

]

Unlike OORP... class Read a where
read :: String -> a
readSq :: (Read a, Num a) => String -> a

readSq s = square (read s)

readSq dr dn s = square dn (read dr s)
= Unlike OOP:

- The vtables are passed in
- The value of type 'd’ is returned out

= This ability turns out to be a Big Deal
Ny

Type classes over time

= Type classes are the most unusual
feature of Haskell's type sys’rem

‘ Hey, what's
| Wild enthusiasm the big

deal?
Despair Hack,
Incomprehension] P / hack,
J L hack
1987 1989 . 1993 1997

Type classes have proved
extraordinarily convenient in practice

= Equality, ordering, serialisation

= Numerical operations. Even numeric
constants are overloaded

= Monadic operations

class Monad m where
return :: a -> m a
(>>=) ::ma -> (a->mb) ->mb

= And on and on....time-varying
values, pretty-printing, collections, | higharkinged
reflection, generic programming, «Mpeverieolem
marshalling, monad transformers....)

Type-class fertility

Higher kinded

type variables
//////7 (1995)

Wadler/

Blott Multi-

type — parameter

classes type classes

(1989) (1991)
Overlapping
instances
“newtype
deriving”
Derivable

type classes

Variations

Implicit
parameters (2000)
Extensible .
records (1996) Computation
at the type
level
Functional
dependencies
(2000) Generic
\ programming
Associated Testing
types (2005)
Applications

Sexy types

Haskell has become a laboratory and
playground for advanced type systems

Polymorphic recursion

Higher kinded type variables
data T k a =T a (k (T k a))

Polymorphic functions as constructor arguments
data T = MKT (forall a. [a] -> [al])

Polymorphic functions as arbitrary function
arguments (higher ranked types)
£f :: (forall a. [a]->[a]) -> ...

= Existential types
= data T = exists a. Show a => MkT a

Sexy types

Haskell has become a laboratory and
playground for advanced type systems

= Generalised Algebraic Data Types (GADTSs)
data Vec n a where
Vnil :: Vec Zero n
Vcons :: a -> Vec n a -> Vec (Succ n) a

= Type families and associated types
class Collection ¢ where
type Elem c
insert :: Elem ¢ -> ¢ -> ¢

= Polymorphic kinds
N == T and on and on
N

Building on success

= Static typing is by far the most successful
program verification technology in use today
- Comprehensible to Joe Programmer

- Checked on every compilation

Simple Sexy types
Types

Nothing
Increasing Tactical nuclear weapon
Hammer :
(cheap, easy confidence that (expensive, needs a trained
to use, limited the program does user, but very effective

effectivenes) what you want indeed)

Bad type systems

|

Programs that
work

Programs that are All programs
well typed

Region of
Abysmal Pain

Sexy type systems

Programs that are All programs
well typed

Programs that
work

=

Smaller Region of Abysmal Pain

~

Plan for World Domination

= Build on the demonstrated success of
static types

= ...by making the type system more
expressive

= ...s0 that more good programs are
accepted (and more bad ones
rejected)

= ...without losing the Joyful Properties
__(comprehensible to programmers)

Encapsulating it all

runST :: (forall s. ST s a) -> a
Stateful
computation [Pure result
runST
Arguments Results

Imperative,

stateful algorithm

A pure function

AE_'?‘

Encapsulating it all

runST (forall s.

[Higher rank type

-

Security of
encapsulation

depends on
parametricity)

Parametricity depends on there
being few polymorphic functions
(e.g.. fi: a->a means f is the

identity function or bottom) y

ST s a) -> a

fAnd that depends on type classes

Monads } {

to make non-parametric
operations explicit

And it also depends
on purity (no side
effects)

§

|

Closi
osing thoughts

~A—~\
S

Luck

Technical excellence helps, but is neither
necessary nor sufficient for a language
to succeed

Luck, on the other hand, is definitely
necessary

We were certainly lucky: the conditions
that led to Haskell are hard to
reproduce

Fun

= Haskell is rich enough to be very useful for
real applications

= But above all, Haskell is a language in which
people play
- Programming as an art form
- Embedded domain-specific languages
- Type system hacks

= Play leads to new discoveries
= You can play too....

Af—a‘

Escape from the ivory tower

= You will be a better Java programmer if
you learn Haskell

= The ideas are more important than the
language: Haskell aspires to infect your
brain more than your hard drive

= The ideas really are important IMHO
- Purity (or atf least controlling effects)
- Types (for big, long-lived software)

Haskell is a laboratory where you can see these
ideas in distilled form

(Bu’r take care: addiction is easy and irreversible)

The Haskell committee

Arvind

Lennart Augustsson
Dave Barton

Brian Boutel
Warren Burton

Jon Fairbairn
Joseph Fasel

Andy Gordon

Maria Guzman
Kevin Hammond
Ralf Hinze

Paul Hudak [editor]
John Hughes [editor]

Thomas Johnsson
Mark Jones

Dick Kieburtz
John Launchbury
Erik Meijer
Rishiyur Nikhil
John Peterson

Simon Peyton Jones [editor]

Mike Reeve

Alastair Reid

Colin Runciman

Philip Wadler [editor]
David Wise

Jonathan Young

