
Escape from
the ivory tower

The Haskell journey

Simon Peyton Jones, Microsoft Research

1976-80

John and Simon
go to university

Early days of microprocessors

4kbytes is a lot of memory

Cambridge University has one (1) computer

The late 1970s, early 1980s

SK combinators,
graph reduction

(Turner)

e.g. (\x. x+x) 5
= S (S (K +) I) I 5

Lambda the Ultimate
(Steele, Sussman)

Backus Turing Award 1977

John Backus Dec 1924 – Mar 2007

The Call

Dataflow architectures
(Arvind et al)

Lazy functional
programming

(Friedman, Wise,
Henderson, Morris, Turner)

SK combinators,
graph reduction

(Turner)

Backus
Can programming be

liberated from the von
Neumann style?

Functional programming:
recursion, pattern matching,

comprehensions etc etc
(ML, SASL, KRC, Hope, Id)

Have no truck with the
grubby compromises of

imperative programming!

Go forth, follow the Path
of Purity, and design

new languages
and new computers
and rule the world

“Because we all
want to build our
own language and

VM”
Cameron Purdy

Result

Chaos
Many, many bright young things

Many conferences
(birth of FPCA, LFP)

Many languages
(Miranda, LML, Orwell, Ponder, Alfl, Clean)

Many compilers

Many architectures
(mostly doomed)

Crystalisation

FPCA, Sept 1987: initial meeting.
A dozen lazy functional programmers, wanting to agree

on a common language.

 Suitable for teaching, research, and application

 Formally-described syntax and semantics

 Freely available

 Embody the apparent consensus of ideas

 Reduce unnecessary diversity

Absolutely no clue how much work we were taking on

Led to...a succession of face-to-face meetings

 April 1990 (2½ yrs later): Haskell 1.0 report

History of most research
languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
e
e
k
s

Pr
ac

ti
ti

on
e
rs

Successful research languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
e
e
k
s

Pr
ac

ti
ti

on
e
rs

C++, Java, Perl, Ruby

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The complete
absence of death

G
e
e
k
s

Pr
ac

ti
ti

on
e
rs

Threshold of immortality

Committee languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The committee
language

G
e
e
k
s

Pr
ac

ti
ti

on
e
rs

Haskell

1,000,000

1

100

10,000

The second life?

G
e
e
k
s

Pr
ac

ti
ti

on
e
rs

“Learning Haskell is a great way of

training yourself to think functionally
so you are ready to take full

advantage of C# 3.0 when it comes
out”

(blog Apr 2007)

“I'm already looking at
coding problems and my

mental perspective is now
shifting back and forth
between purely OO and

more FP styled solutions”
(blog Mar 2007)

Apr 1990 1995 2000 2005 2010

 Java
(“a legacy language” Ola Bini Yow 2011)

Haskell is 21; so is Michael

Michael (b 1990)

Haskell the cat (b. 2002)

WG2.8 June 1992

WG2.8 June 1992
Phil John

WG2.8 June 1992

Dorothy

Sarah

Language popularity
how much language X is used

langpop.com langpop.com Nov 2011

Haskell #20
(#25 in 2008)

Language popularity
how much language X is talked about

langpop.com Nov 2011

Haskell #5
(#6 in 2008)

Incredibly supportive community

Mobilising the community

 Package = unit of distribution

 Cabal: simple tool to install package
and all its dependencies

 Hackage: central
repository of
packages, with
open upload policy

bash$ cabal install pressburger

Now over 3,5000 packages on Hackage

The packages on Hackage

Tools: eg parallel profiler

The Glasgow Haskell Compiler

 GHC today
– First release 1991: 13k lines, 110

modules, sequential

– Now: 125k lines, 380 modules, parallel

 >> 100k users

 100% open source (BSD)

 Still in furious development: > 200
commits/month

Commercial users

 High assurance systems (Galois, Mitre, NICTA)

 Controls systems (Eaton)

 Banks (lots)

 Electricity supply contracts (RWE), risk analysis
(iba CG)

 Web frameworks/servers (HAppS, JanRain)

 Games (Joyride)

 Social networks (Peerium)

http://haskell.org/haskellwiki/Haskell_in_industry

After 21 years, Haskell has a vibrant,
growing ecosystem, and is still in a

ferment of new developments.

Why?

1. Keep faith with deep, simple principles

2. Killer apps:

• domain specific languages

• concurrent and parallel programming

3. Avoid success at all costs

“This is so simple I‟ve
wasted my entire life”

Steve Vinoski

Avoiding success

 A user base that is

– Smallish: enough users to drive innovation,
not so many as to stifle it

– Tolerant. Very tolerant.

– Innovative and slightly geeky: Haskell users
react to new features like hyenas react to
red meat

– Extremely friendly

 makes Haskell nimble.

 Avoided the Dead Hand of standardisation
committees

Deep, simple principles

Haskell

Dozens of
types

100+

constructors

System FC
3 types,

15 constructors

Rest of GHC

Source language Intermediate language

Deep simple principles

 System F is GHC‟s intermediate language

data Expr

 = Var Var

 | Lit Literal

 | App Expr Expr

 | Lam Var Expr

 | Let Bind Expr

 | Case Expr Var Type [(AltCon, [Var], Expr)]

 | Cast Expr Coercion

 | Type Type

 | Coercion Coercion

 | Tick Note Expr

data Bind = NonRec Var Expr | Rec [(Var,Expr)]

data AltCon = DEFAULT | LitAlt Lit | DataAlt DataCon

(Well, something very like System F.)

System FC

e ::= x | k |  | 
 | e1 e2 | \(x:).e
 | let bind in e
 | case e of alts
 | e  

Everything has to translate into this tiny language
Fantastic language design sanity check

1. Purity and laziness

2. Types; especially type classes

What deep, simple
principles?

Laziness
and

Purity

Laziness

 Laziness was Haskell‟s initial rallying cry

 John Hughes‟s famous paper “Why
functional programming matters”
– Modular programming needs powerful glue

– Lazy evaluation enables new forms of
modularity; in particular, separating generation
from selection.

– Non-strict semantics means that unrestricted
beta substitution is OK.

But...

 Laziness makes it much harder to reason about
performance, especially space. Tricky uses of seq
for effect seq :: a -> b -> b

 Laziness has a real implementation cost

 Laziness can be added to a strict language
(although not as easily as you might think)

 And it‟s not so bad only having bV instead of b

So why wear the hair shirt of laziness?

Laziness keeps you pure

 Every call-by-value language has given into
the siren call of side effects

 But in Haskell
 (print “yes”) + (print “no”)

just does not make sense. Even worse is
 [print “yes”, print “no”]

 So effects (I/O, references, exceptions)
are just not an option.

 Result: prolonged embarrassment.
Stream-based I/O, continuation I/O...
but NO DEALS WIH THE DEVIL

Laziness keeps you pure

 Every call-by-value language has given into
the siren call of side effects

 But in Haskell
 (print “yes”) + (print “no”)

just does not make sense. Even worse is
 [print “yes”, print “no”]

 So effects (I/O, references, exceptions)
are just not an option.

 Result: prolonged embarrassment.
Stream-based I/O, continuation I/O...
but NO DEALS WIH THE DEVIL

Salvation through monads

A value of type (IO t) is an “action”

that, when performed, may do some
input/output before delivering a result

of type t.

getChar :: IO Char
putChar :: Char -> IO ()

main :: IO ()

main = putChar „x‟

 The main program is an action of type IO ()

Connecting I/O operations

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

eg. Read two characters,
 print the second, return both

 getChar >>= (\a ->

 getChar >>= (\b ->

 putChar b >>= (\() ->

 return (a,b))))

getChar >>= \a ->

getChar >>= \b ->

putchar b >>= \()->

return (a,b)

do {

 a <- getChar;

 b <- getChar;

 putchar b;

 return (a,b)

}

==

The do-notation

 Syntactic sugar only
 Easy translation into (>>=), return
 Deliberately imperative “look and feel”

Control structures

Values of type (IO t) are first class

So we can define our own “control structures”

forever :: IO () -> IO ()

forever a = do { a; forever a }

repeatN :: Int -> IO () -> IO ()

repeatN 0 a = return ()

repeatN n a = do { a; repeatN (n-1) a }

e.g. repeatN 10 (putChar „x‟)

Fine grain control

 reverse :: String -> String
o pure: no side effects

 launchMissiles :: String -> IO [String]
o impure: international side effects

 transfer :: Acc -> Acc -> Int -> STM ()
o transactional: limited effects (reading and

writing transactional variables)

There are lots of useful monads,
not only I/O

Our biggest mistake

Using the scary term
“monad”

rather than

“warm fuzzy thing”

What have we achieved?

 The ability to mix imperative and purely-
functional programming, without ruining
either: the types keep them separate

 All laws of pure functional programming
remain unconditionally true

Purity by default
effects are a little

inconvenient
But why
is purity
good?

Purity pays: understanding

 Would it matter if we swapped the
order of these two calls?

 What if X1=X2?

 I wonder what else X1.insert does?

Lots of heroic work on static analysis,
but hampered by unnecessary effects

X1.insert(Y)
X2.delete(Y)

What does this
program do?

Purity pays: verification

void Insert(int index, object value)
 requires (0 <= index && index <= Count)
 ensures Forall{ int i in 0:index; old(this[i]) == this[i]
}
{ ... }

Pre-condition

 The pre and post-conditions are
written in... a functional language

 Also: object invariants
But: invariants temporarily broken
Hence: “expose” statements

Spec#

Post-
condition

Purity pays: testing

In an imperative or OO language, you must

 set up the state of the object, and the
external state it reads or writes

 make the call
 inspect the state of the object, and the

external state
 perhaps copy part of the object or global

state, so that you can use it in the
postcondition

propUnion :: Set a -> Bool
propUnion s = union s s == s

A property of sets
s  s = s

Purity pays: maintenance

 The type of a function tells you a
LOT about it

 Large-scale data representation
changes in a multi-100kloc code base
can be done reliably:
– change the representation

– compile until no type errors

– works

reverse :: [a] -> [a]

Purity pays: parallelism
 Pure programs are “naturally parallel”

 No mutable state
means no locks,
no race hazards

 Results totally unaffected by
parallelism (1 processor or zillions)

 Examples
– Google‟s map/reduce

– SQL on clusters

– PLINQ

*

*
+

A1

B1 B2

B1
A3

The challenge of effects

Arbitrary effects
C

No effects
Haskell

Useful

Useless

Dangerous Safe

The challenge of effects

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A
(everyone else)

Plan B
(Haskell)

Lots of cross-over

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A
(everyone else)

Plan B
(Haskell)

Envy

Lots of cross-over

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A
(everyone else)

Plan B
(Haskell)

Ideas; e.g. Software
Transactional Memory
(retry, orElse)

SLPJ conclusions

 One of Haskell‟s most significant
contributions is to take purity seriously,
and relentlessly pursue Plan B

 Purely functional programming feels very
very different: you have to “rewire your
brain”

 But it‟s not “just another approach”:
ultimately, there is no alternative.

Types and
type classes

Starting point: ML

 Parametric polymorphism
 append :: [a] -> [a]

 Types are inferred
 append [] ys = ys
 append (x:xs) ys = x : append xs ys

 Algebraic data types
 data Tree a
 = Leaf a
 | Branch (Tree a) (Tree a)

Problem

 Functions that are “nearly polymorphic”

– member :: a -> [a] -> Bool

– sort :: [a] -> [a]

– square :: a -> a

– show :: a -> String

– serialise :: a -> BitString

– hash :: a -> Int

 Usual solution: “bake them in” as a
runtime service

Solution

 Functions that are “nearly polymorphic”

– member :: a -> [a] -> Bool

– sort :: [a] -> [a]

– (+) :: a -> a -> a

– show :: a -> String

– serialise :: a -> BitString

– hash :: a -> Int

 Usual solution: “bake them in” as a
runtime service

Type classes

Similarly:

square :: a -> a

square :: Num a => a -> a

square x = x * x

sort :: Ord a => [a] -> [a]

serialise :: Show a => a -> String

member :: Eq a => a -> [a] -> Bool

Works for any type „a‟,
provided ‘a’ is an

instance of class Num

Declaring classes

 square :: Num a => a -> a

class Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

 ...etc...

instance Num Int where

 (+) = plusInt

 (*) = mulInt

 ...etc...

Haskell class is
like a Java
interface

Allows „square‟ to be
applied to an Int

How type classes work

square :: Num n => n -> n

square x = x*x

class Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

 negate :: a -> a

 ...etc..

square :: Num n -> n -> n

square d x = (*) d x x

When you write this... ...the compiler generates this

data Num a

 = MkNum (a->a->a)

 (a->a->a)

 (a->a)

 ...etc...

(*) :: Num a -> a -> a -> a

(*) (MkNum _ m _ ...) = m

A value of type (Num T) is a
vector of the Num operations for

type T

The class decl translates to:
• A data type decl for Num
• A selector function for

each class operation

Unlike OOP...

 Unlike OOP:

– The vtables are passed in
– The value of type „a‟ is returned out

 This ability turns out to be a Big Deal

class Read a where

 read :: String -> a

readSq :: (Read a, Num a) => String -> a
readSq s = square (read s)

readSq dr dn s = square dn (read dr s)

Type classes over time

 Type classes are the most unusual
feature of Haskell‟s type system

Incomprehension

Wild enthusiasm

1987 1989 1993 1997

Implementation begins

Despair Hack,
hack,
hack

Hey, what‟s
the big
deal?

 Type classes have proved
extraordinarily convenient in practice

 Equality, ordering, serialisation

 Numerical operations. Even numeric
constants are overloaded

 Monadic operations

 And on and on....time-varying
values, pretty-printing, collections,
reflection, generic programming,
marshalling, monad transformers....

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

Note the
higher-kinded

type variable, m

Type-class fertility

Wadler/
Blott
type

classes
(1989)

Multi-
parameter

type classes
(1991) Functional

dependencies
(2000)

Higher kinded
type variables

(1995)

Associated
types (2005)

Implicit
parameters (2000)

Generic
programming

Testing

Extensible
records (1996) Computation

at the type
level

“newtype
deriving”

Derivable
type classes

Overlapping
instances

Variations

Applications

Sexy types

 Haskell has become a laboratory and
playground for advanced type systems

 Polymorphic recursion

 Higher kinded type variables
data T k a = T a (k (T k a))

 Polymorphic functions as constructor arguments
data T = MkT (forall a. [a] -> [a])

 Polymorphic functions as arbitrary function
arguments (higher ranked types)
f :: (forall a. [a]->[a]) -> ...

 Existential types
data T = exists a. Show a => MkT a

Sexy types

 Haskell has become a laboratory and
playground for advanced type systems

 Generalised Algebraic Data Types (GADTs)
 data Vec n a where
 Vnil :: Vec Zero n

 Vcons :: a -> Vec n a -> Vec (Succ n) a

 Type families and associated types
 class Collection c where
 type Elem c

 insert :: Elem c -> c -> c

 Polymorphic kinds

and on and on

Building on success

 Static typing is by far the most successful
program verification technology in use today
– Comprehensible to Joe Programmer

– Checked on every compilation

The spectrum of confidence

Increasing
confidence that

the program does
what you want

Hammer
(cheap, easy

to use, limited
effectivenes)

Tactical nuclear weapon
(expensive, needs a trained

user, but very effective
indeed)

Coq Nothing

Simple
types

Sexy types

Bad type systems

All programs

Programs that
work

Programs that are
well typed

Region of
Abysmal Pain

Sexy type systems

All programs

Programs that
work

Programs that are
well typed

Smaller Region of Abysmal Pain

Plan for World Domination

 Build on the demonstrated success of
static types

 ...by making the type system more
expressive

 ...so that more good programs are
accepted (and more bad ones
rejected)

 ...without losing the Joyful Properties
(comprehensible to programmers)

Encapsulating it all

 runST :: (forall s. ST s a) -> a

Stateful
computation Pure result

Imperative,
stateful algorithm

runST

Arguments Results

A pure function

Encapsulating it all

 runST :: (forall s. ST s a) -> a

Higher rank type

Monads Security of
encapsulation
depends on

parametricity

Parametricity depends on there
being few polymorphic functions

(e.g.. f:: a->a means f is the
identity function or bottom)

And that depends on type classes
to make non-parametric

operations explicit
(e.g. f :: Ord a => a -> a)

And it also depends
on purity (no side

effects)

Closing thoughts

Luck

 Technical excellence helps, but is neither
necessary nor sufficient for a language
to succeed

 Luck, on the other hand, is definitely
necessary

 We were certainly lucky: the conditions
that led to Haskell are hard to
reproduce

Fun

 Haskell is rich enough to be very useful for
real applications

 But above all, Haskell is a language in which
people play
– Programming as an art form

– Embedded domain-specific languages

– Type system hacks

 Play leads to new discoveries

 You can play too....

Escape from the ivory tower

 You will be a better Java programmer if
you learn Haskell

 The ideas are more important than the
language: Haskell aspires to infect your
brain more than your hard drive

 The ideas really are important IMHO
– Purity (or at least controlling effects)

– Types (for big, long-lived software)

Haskell is a laboratory where you can see these
ideas in distilled form

(But take care: addiction is easy and irreversible)

The Haskell committee

Arvind
Lennart Augustsson
Dave Barton
Brian Boutel
Warren Burton
Jon Fairbairn
Joseph Fasel
Andy Gordon
Maria Guzman
Kevin Hammond
Ralf Hinze
Paul Hudak [editor]
John Hughes [editor]

Thomas Johnsson
Mark Jones
Dick Kieburtz
John Launchbury
Erik Meijer
Rishiyur Nikhil
John Peterson
Simon Peyton Jones [editor]
Mike Reeve
Alastair Reid
Colin Runciman
Philip Wadler [editor]
David Wise
Jonathan Young

